
A Modified O (1) Algorithm for Real Time
Task in Operating System

Rohan R. Kabugade#1, S. S Dhotre #2, S H Patil #3
#1M.Tech Computer Department, Bharati Vidyapeeth University College of Engineering Pune,India

#2Associate Professor Computer Department, Bharati Vidyapeeth University College of Engineering Pune,India
#3 Professor Computer Department, Bharati Vidyapeeth University College of Engineering Pune,India

Abstract - The main goal of the proposed architecture is to
provide a fast scheduling algorithm, which makes a perfect
balance between fairness and quick response. In this project,
we presents a modified algorithm named MOFRT (Modify O
(1) For Real-Time) based on the Linux kernel 3.2 to improve
the Queue Management for Real time Tasks. Though, some of
these algorithms have not been implemented since it is very
hard to support new scheduling algorithms on nearly every
operating system. To solve this problem, we improve the
scheduling mechanism in Linux to provide a elastic
scheduling framework, we select the kernel in 3.2 to improve,
because the O(1) schedule algorithm is very high powered
and fair. We reserve I/O waiting queue to reduce the
response time, eliminate the expired queue to enhance the
stability of real time tasks, and use dynamic calculation
methods to distribute time slice and priority.

Keywords — kernel, real-time OS, run queue, schedule.

I. INTRODUCTION

Real-time computing is required in many application
domains, such as avionics systems, traffic control system,
automated factory systems. Each application has peculiar
characteristics in terms of timing constraints and
computational requirements s (such as periodicity,
criticality of the deadlines, response time, etc). Some
mission-critical real-time systems may suffer irreparable
damages if a deadline is missed. It is the system builder’s
responsibility to choose an operating system that can
support and schedule these jobs according to their timing
specifications so that no deadline will be missed.

The basic data structure in the scheduler is the run
queue. The run queue is the list of runnable processes on a
given processor; there is one run queue per processor.
Each runnable process is on exactly single run queue.
On the other hand, some soft real-time applications such as
streaming audio/video and multiplayer games also have
timing constraints and require performance guarantees
from the underlying operating system. The application
output provided to users is optimized by meeting the
maximum number of real-time constraints (e.g., deadlines).
But unlike hard real-time applications, occasional
violations of these constraints may not result in a useless
execution of the application or catastrophic consequences.

The use of computers for control and monitoring of
industrial processes has expanded greatly in recently, and
will probably expand even more dramatically in the near
prospect.. In other installations, however, an efficient use
of the computer can only be achieved by a careful

scheduling of the time-critical control and monitor
functions themselves. Two scheduling algorithms for this
type of programming are studied; both are priority driven
and pre-emptive; meaning that the processing of any task
is interrupted by a request for any higher priority task. The
first algorithm used to study a fixed priority assignment
and can achieve processor utilization. The second
scheduling algorithm can achieve full processor utilization
by assigning priorities dynamically.

A priority-based scheduling is a common type of
scheduling algorithm. The thought is to rank processes
based on their worth and need for processor time. A higher
priority processes run before the lower priority processes,
Linux builds on this idea and provides dynamic priority-
based scheduling. To fulfil scheduling objectives we begin
with an initial base priority and then enable the scheduler
to increase or decrease the priority dynamically. Linux is
pre-emptive, when a process enters the task running state,
the kernel checks whether its priority is higher than the
priority of the currently executing process. If it is, the
scheduler is invoked to anticipate the currently executing
process and run the newly runnable process. In addition,
when time slice of a process reaches zero, then pre-
emption process is done.

Advances in computer technology have also
dramatically changed the design of many real-time
controller devices that are being used on a daily basis.
Many traditional mechanical controllers have been
gradually replaced by digital chips that are much cheaper
and more powerful. In fact, we believe that the computing
power of future embedded digital controllers will be at the
same level as that in today’s big system servers. As a
result, future embedded devices must be able to handle
complex application requirements, real-time or otherwise.
How we can design real-time operating systems (RTOSs)
to support applications with mixed real-time and non real-
time performance requirements will be an important issue.
These three types of timing requirements (hard real-time,
soft real-time, and non real-time) are all important for
many real-time systems. It is the goal of our research to
make MOFRT to satisfy these different requirements.

II. RELATED WORK

This section gives the overview of the research work
carried out related to the Queue Management. This
overview mainly focuses on the Improvement of queue
management and Improvement of process analysis.

Rohan R. Kabugade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1587-1589

www.ijcsit.com 1587

Wang Chi Zhou Huaibei, Ma Chao Chen Nian. in [3]
has proposed an approach to Modified O(1) Scheduling
Algorithm for Real-Time Tasks. In this author presents a
modified algorithm named MOFRT(Modify O(1) For
Real-Time) based on the Linux kernel. Researchers in the
real-time system community have intended and studied
many advanced scheduling algorithms. On the other hand,
most of these algorithms have not been implemented since
it is very difficult to support new scheduling algorithms on
most operating systems. To solve this problem, they
enhance the scheduling mechanism in Linux to provide a
flexible scheduling framework, they choose the kernel in
2.6.11 edition to improve, because the O(1) schedule
algorithm is very high-powered and fair. The main goal of
this architecture they present is that with the help of fast
prototyping scheduling algorithms, that makes a perfect
balance between quick response and fairness. With the
help of reserve I/O waiting queue to diminish the response
time, remove the expired queue to improve the steadiness
of real-time tasks, and use dynamic calculation methods to
distribute time slice and priority.

The design of an Operating System (OS) scheduler is
meant to allocate its resources to all applications. Wong
C.S., Tan I.K.T. , Kumari R.D., Lam J.W., and Fun W.
[2] has introduced the scheduling techniques used by two
Linux schedulers first is O(1) and second is Completely
Fair Scheduler (CFS). The CFS is the Linux kernel
scheduler that replaces the O(1) scheduler in the 2.6.23
kernel. The goal of design for CFS is to provide fair CPU
resource allocation among executing tasks without
degrading the interactive performance. To prevent the
starvation it is necessary to achieve good fairness in
distributing CPU resource among tasks. Though there are
many conventional operating system benchmarks that are
geared towards measuring systems performance in terms
of throughput these design goals have never been
scientifically evaluated despite. Therefore they
scientifically evaluate the design goals of CFS by
empirical evaluation. Also by using fairness and
interactivity benchmarks, they measure the fairness and
interactivity performance. Comparisons of CFS kernel and
O(1) schedulers of the open source Linux OS are used to
provide a meaningful representation of results. So the
experience indicated that the CFS does achieve its design
goals.

Liu CL, Layland JW in [5] has discussed about
Scheduling algorithms for multiprogramming in a hard
real-time environment. In this authors explain that the
problem of multi-program scheduling on a single processor
is studied from the viewpoint of the characteristics peculiar
to the program functions that need guaranteed ser- vice. It
is shown that an optimum fixed priority scheduler
possesses an upper bound to processor operation which
may be as low as 70 percent for large task sets. It is also
shown that full processor use can be achieved by
dynamically assigning priorities on the basis of their recent
deadlines. They also discussed about the combination of
these two scheduling techniques.

CPU scheduler is a very important subsystem which
affects fairness and interactivity. Development of Linux
kernel is comparatively fast-paced. In many CPU
schedulers have been designed by kernel hackers and
researchers. It is necessary to accurately analyse and
compare different characteristics among these schedulers,
so as to design and understand better CPU schedulers for
various applications. However, to compare and analyse
these CPU schedulers precisely, researchers lack a
straight-forward method. Shen Wang, Yu Chen, Wei
Jiang, Peng Li, Ting Dai and Yan Cui [4] has
systematically analyse and measure interactivity, fairness
and multi-processors performance of three schedulers:
O(1), CFS and RSDL, by using micro, synthesis and real
application benchmarks. In Linux kernel-2.6.29, all these
schedulers have been ported in a single scheduler
framework. Experimental results show that there minor
differences in synthesis and real applications and a notable
differences in fairness and interactivity under micro
benchmarks. The impact of implementations of schedulers
on fairness and interactivity of applications also has been
analysed. Also it discusses the challenges in estimating
application resource requirements in different
environments. They also present some ideas for
developing future CPU schedulers.

The process scheduler is an important part of the
kernel because running processes is the point of using the
computer in the first place. Juggling the demand of process
scheduling are nontrivial. However, a large number of
runnable processes scalability concerns tradeoffs between
latency and throughput, and the demand of various work
load make a one size fits all algorithm hard to find. The
Linux kernel new process scheduler, however, comes very
close to appeasing all parties and providing an optimal
solution for all case with perfect scalability. The 2.6 Linux
kernel introduces a completely new scheduler that’s
commonly referred to as the O(1) scheduler. The scheduler
can perform the scheduling of task in constant time. M A
Wei-feng and WANG jai-hai [1, 6] describes how a task is
executed on single CPU. They also mention data structures
like runqueues, priority array and process descriptor.

 In [6] author explains that the Linux kernel is one of
the most interesting yet least understood open-source
projects. It is also a basis for developing new kernel code.
That is why Sams is excited to bring you the latest Linux
kernel development information from a Novell insider in
the second edition of Linux Kernel Development. This
authoritative, practical guide will help you better
understand the Linux kernel through updated coverage of
all the major subsystems, new features associated with
Linux 2.6 kernel and insider information on not-yet-
released developments. You'll be able to take an in-depth
look at Linux kernel from both a theoretical and an applied
perspective as you cover a wide range of topics, including
algorithms, system call interface, paging strategies and
kernel synchronization. Get the top information right from
the source in Linux Kernel Development.

Rohan R. Kabugade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1587-1589

www.ijcsit.com 1588

III. PROPOSED SYSTEM

Fig. 1 System Architecture

i. Processes- It is a small task in execution. Processes
are given as an input to the system.

ii. Run Queue: Run queue contains all runnable process.
This run queue contains the two arrays:

a. Active Array: All the tasks in the associated run
queue that have time slice left are contained in the
active array

b. Expire Array: The expired array contains all the tasks
in the associated run queue that have exhausted their
time slice.

iii. Check Priority: Each priority array contains one
queue of runnable processors per priority level. For
discovering the highest priority runnable task in the
system, we use a priority bitmap, which contained in
priority array. This will improve the performance of
the system by different scheduling techniques.

iv. Wait: It consists of the processes in waiting state.
v. Execution: It consists of the processes in execution

state.

IV. CONCLUSIONS

This paper concentrates on Scheduling techniques for
real time system. Process scheduling is a frequently
overlooked determinant of real-time performance. This
paper presents a modified algorithm base on Linux kernel
for real-time system. It is the mixture of normal operation
system and real-time operation system. We modify Linux
to satisfy multi functionality of the real-time system. We
can deal with real-time tasks rapidly and accurately by
using scheduling techniques. We also improve scheduling
algorithms compatibility with other Real-time System.

REFERENCES
[1] MA Wei-feng, WANG Jai-hai “Analysis of the Linux 2.6

kernel scheduler”. 2010 International Conference on
Computer Design and Application (ICCDA 2010).

[2] Wong C.S., Tan I.K.T. , Kumari R.D., Lam J.W., Fun W
“Fairness and Interactive Performance of O(1) and CFS
Linux Kernel Scheduler”. IEEE 2008.

[3] Wang Chi Zhou Huaibei, Ma Chao Chen Nian. “A
Modified O(1) Scheduling Algorithm for Real-Time Tasks”.
In: Proc. of the IEEE, 2006.

[4] Shen Wang, Yu Chen, Wei Jiang, Peng Li, Ting Dai and
Yan Cui “Fairness and Interactivity of Three CPU
Schedulers in Linux”.2009 15th IEEE international
Conference on Embedded and Real-Time Computing
Systems and Applications

[5] Liu CL, Layland JW. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal
of the ACM, 1973.

[6] Robert Love Linux Kernel Development Second Edition
Jan 2006.

Rohan R. Kabugade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1587-1589

www.ijcsit.com 1589

